On Model-Based Clustering, Classification, and Discriminant Analysis

author

  • Paul D. McNicholas
Abstract:

The use of mixture models for clustering and classification has burgeoned into an important subfield of multivariate analysis. These approaches have been around for a half-century or so, with significant activity in the area over the past decade. The primary focus of this paper is to review work in model-based clustering, classification, and discriminant analysis, with particular attention being paid to two techniques that can be implemented using respective R packages. Parameter estimation and model selection are also discussed. The paper concludes with a summary, discussion, and some thoughts on future work.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Model-Based Clustering, Discriminant Analysis, and Density Estimation

Cluster analysis is the automated search for groups of related observations in a dataset. Most clustering done in practice is based largely on heuristic but intuitively reasonable procedures, and most clustering methods available in commercial software are also of this type. However, there is little systematic guidance associated with these methods for solving important practical questions that...

full text

mortality forecasting based on lee-carter model

over the past decades a number of approaches have been applied for forecasting mortality. in 1992, a new method for long-run forecast of the level and age pattern of mortality was published by lee and carter. this method was welcomed by many authors so it was extended through a wider class of generalized, parametric and nonlinear model. this model represents one of the most influential recent d...

15 صفحه اول

Text Sentiment Classification Based on Mixed Cloud Vector Model Clustering and Kernel Fisher Discriminant

In today’s world, the web has dramatically changed the way that people express their opinions. People use the internet to express their opinion, attitude, feeling and emotion about films, goods, news etc. It is challenging to automatically classify mass subjectivity comments into different sentiment orientation categories (e.g. positive/negative). Furthermore, the ambiguity and randomness, whic...

full text

Gear Fault Diagnosis and Classification Based on Fisher Discriminant Analysis

Gears are the most essential parts in rotating machinery. So gear fault modes diagnosis and levels classification are very important in engineering practice. This paper present a novel method in gear fault recognition and identification using Fisher discriminant analysis (FDA) due to FDA can reduct dimension when analyse signal. The real data collected from a gearbox test rig is used to validat...

full text

Process monitoring based on classification tree and discriminant analysis

To cope with the computational intensity associated with classification tree analysis and the multicolinearity in the process data, a newly developed process monitoring scheme integrating classification tree and Fisher Discriminant Analysis (FDA) is developed. FDA extracts the most significant components in the original process data and achieves optimal discriminating among different faults. Cl...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 10  issue None

pages  181- 190

publication date 2011-11

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023